on special generalized douglas-weyl metrics

نویسندگان

e. peyghan

چکیده

in this paper, we study a special class of generalized douglas-weyl metrics whose douglas curvature is constant along any finslerian geodesic. we prove that for every landsberg metric in this class of finsler metrics, ? = 0 if and only if h = 0. then we show that every finsler metric of non-zero isotropic flag curvature in this class of metrics is a riemannian if and only if ? = 0.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Special Generalized Douglas-Weyl Metrics

In this paper, we study a special class of generalized Douglas-Weyl metrics whose Douglas curvature is constant along any Finslerian geodesic. We prove that for every Landsberg metric in this class of Finsler metrics, ? = 0 if and only if H = 0. Then we show that every Finsler metric of non-zero isotropic flag curvature in this class of metrics is a Riemannian if and only if ? = 0.

متن کامل

Generalized Douglas-Weyl Finsler Metrics

In this paper, we study generalized Douglas-Weyl Finsler metrics. We find some conditions under which the class of generalized Douglas-Weyl (&alpha, &beta)-metric with vanishing S-curvature reduce to the class of Berwald metrics.

متن کامل

On Generalized Douglas-Weyl Spaces

In this paper, we show that the class of R-quadratic Finsler spaces is a proper subset of the class of generalized Douglas-Weyl spaces. Then we prove that all generalized Douglas-Weyl spaces with vanishing Landsberg curvature have vanishing the non-Riemannian quantity H, generalizing result previously only known in the case of R-quadratic metric. Also, this yields an extension of well-known Num...

متن کامل

λ-Projectively Related Finsler Metrics and Finslerian Projective Invariants

In this paper, by using the concept of spherically symmetric metric, we defne the notion of λ-projectively related metrics as an extension of projectively related metrics. We construct some non-trivial examples of λ-projectively related metrics. Let F and G be two λ-projectively related metrics on a manifold M. We find the relation between the geodesics of F and G and prove that any geodesic of...

متن کامل

On a class of Douglas metrics

In this paper, we study a class of Finsler metrics defined by a Riemannian metric and a 1-form on a manifold. We find an equation that characterizes Douglas metrics on a manifold of dimension n ≥ 3.

متن کامل

On conformal transformation of special curvature of Kropina metrics

      An important class of Finsler metric is named Kropina metrics which is defined by Riemannian metric α and 1-form β  which have many applications in physic, magnetic field and dynamic systems. In this paper, conformal transformations of χ-curvature and H-curvature of Kropina metrics are studied and the conditions that preserve this quantities are investigated. Also it is shown that in the ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
journal of sciences, islamic republic of iran

ناشر: university of tehran

ISSN 1016-1104

دوره 23

شماره 2 2012

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023